Message Variations and Persuasive Effects

a course offered at the
Netherlands National Graduate School of Linguistics (LOT)
(Landelijke Onderzoekschool Taalwetenschap)
June 2013 

DETAILED OUTLINE AND READINGS

 

Day 1: Theoretically-informed persuasive message design

 

O’Keefe, D. J. (in press). Reasoned action theory. Chapter 6 in: O’Keefe, D. J. (in press). Persuasion: Theory and research (3rd ed.). Los Angeles, CA: Sage.  [Word document]

 

Fishbein, M., & Yzer, M. C. (2003). Using theory to design effective health behavior interventions. Communication Theory, 13, 164-183. doi: 10.1111/j.1468-2885.2003.tb00287.x  [pdf]

 

 

For further reading:

 

Abraham, C. (2012). Developing evidence-based content for health promotion materials. In C. Abraham & M. Kools (Eds.), Writing health communication: An evidence-based guide (pp. 83-98). Los Angeles: Sage.

 

Middlestadt, S. E. (2012). Beliefs underlying eating better and moving more: Lessons learned from comparative salient belief elicitations with adults and youths. The Annals of the American Academy of Political and Social Science, 640, 81–100. doi:10.1177/0002716211425015

 

Dillard, J. P. (2011). An application of the integrative model to women’s intention to be vaccinated against HPV: Implications for message design. Health Communication, 26, 479-486. doi: 10.1080/10410236.2011.554170

 

Cho, H., & Witte, K. (2005). Managing fear in public health campaigns: A theory-based formative evaluation process. Health Promotion Practice, 6, 482–490. doi: 10.1177/1524839904263912

 

Basil, M., & Witte, K. (2012). Health risk message design using the extended parallel process model. In H. Cho (Ed.), Health communication message design: Theory and practice (pp. 41-58). Los Angeles: Sage.

 

Van den Putte, B., & Dhondt, G. (2005). Developing successful communication strategies: A test of an integrated framework for effective communication. Journal of Applied Social Psychology, 35, 2399-2420.

 

 

 

 

Day 2: Conceptualizing message properties and effects

 

O’Keefe, D. J. (2003). Message properties, mediating states, and manipulation checks: Claims, evidence, and data analysis in experimental persuasive message effects research. Communication Theory, 13, 251-274. doi: 10.1111/j.1468-2885.2003.tb00292.x  [pdf]

 

O’Keefe, D. J. (in press). The relative persuasiveness of different message types does not vary as a function of the persuasive outcome assessed: Evidence from 29 meta-analyses of 2,062 effect sizes for 13 message variations. Communication Yearbook, 37.  [Word document]

 

 

For further reading about message variation definition and related issues:

 

Tao, C.-C., & Bucy, E. P. (2007). Conceptualizing media stimuli in experimental research: Psychological versus attribute-based definitions. Human Communication Research, 33, 397-426. doi:10.1111/j.1468-2958.2007.00305.x

 

Bucy, E. P., & Tao, C.-C. (2007). The mediated moderation model of interactivity. Media Psychology, 9, 647-672. doi: 10.1080/15213260701283269

 

Abraham, C., & Michie, S. (2008). A taxonomy of behavior change techniques used in interventions. Health Psychology, 27, 379-387. doi: 10.1037/0278-6133.27.3.379

 

 

For further reading about null hypothesis significance testing and related issues:

 

Kline, R. B. (2004). Beyond significance testing: Reforming data analysis methods in behavioral research. Washington, DC: American Psychological Association.

 

Levine, T. R., Weber, R., Hullett, C., Park, H. S., & Lindsey, L. L. (2008). A critical assessment of null hypothesis significance testing in quantitative communication research. Human Communication Research, 34, 171-187. doi:10.1111/j.1468-2958.2008.00317.x

 

Levine, T. R., Weber, R., Park, H. S., & Hullett, C. (2008). A communication researchers’ guide to null hypothesis significance testing and alternatives. Human Communication Research, 34, 188-209.  doi: 10.1111/j.1468-2958.2008.00318.x

 

O’Keefe, D. J. (2011). The asymmetry of predictive and descriptive capabilities in quantitative communication research: Implications for hypothesis development and testing. Communication Methods and Measures, 5, 113-125. doi: 10.1080/19312458.2011.568375

 

Fidler, F., & Loftus, G. R. (2009). Why figures with error bars should replace p values: Some conceptual arguments and empirical demonstrations. Zeitschrift fur Psychologie, 217, 27-37. doi: 10.1027/0044-3409.217.1.27

 

 

 

 

Day 3: Generalizing about message effects

 

Brashers, D. E., & Jackson, S. (1999). Changing conceptions of “message effects”: A 24-year overview. Human Communication Research, 25, 457-477. doi: 10.1111/j.1468-2958.1999.tb00456.x  [pdf]

 

Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine, 2, 696-701. doi: 10.1371/journal.pmed.0020124 [pdf]

 

For further reading:

 

Clark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. Journal of Verbal Learning and Verbal Behavior, 12, 335‑359. doi: 10.1016/S0022-5371(73)80014-3

 

Jackson, S., & Jacobs, S. (1983). Generalizing about messages: Suggestions for design and analysis of experiments. Human Communication Research, 9, 169‑181. doi: 10.1111/j.1468-2958.1983.tb00691.x

 

Ioannidis, J. P. A. (2008). Why most discovered true associations are inflated. Epidemiology, 19, 640-648. doi: 10.1097/EDE.0b013e31818131e7

 

Bertamini, M., & Munafò, M. (2012). Bite-size science and its undesired side effects. Perspectives on Psychological Science, 7, 67-71. doi:10.1177/1745691611429353

 

Levine, T., Asada, K. J., & Carpenter, C. (2009). Sample sizes and effect sizes are negatively correlated in meta-analyses: Evidence and implications of a publication bias against non-significant findings. Communication Monographs, 76, 286-302. doi: 10.1080/03637750903074685

 

Ferguson, C. J., & Heene, M. (2012). A vast graveyard of undead theories: Publication bias and psychological science’s aversion to the null. Perspectives on Psychological Science, 7, 555-561. doi: 10.1177/1745691612459059

 

 

Pashler, H., & Harris, C. R. (2012). Is the replicability crisis overblown? Three arguments examined. Perspectives on Psychological Science, 7, 531-536. doi: 10.1177/1745691612463401

 

Field, A. P., & Gillett, R. (2010) How to do a meta-analysis. British Journal of Mathematical & Statistical Psychology, 63, 665-694. doi: 10.1348/000711010X502733

 

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Chichester, West Sussex, UK: Wiley.

 

Card, N. A. (2012). Applied meta-analysis for social science research. New York: Guilford.

 

 

 

 

Day 4: Assorted message variations part 1

 

O’Keefe, D. J. (2012). From psychological theory to message design: Lessons from the story of gain-framed and loss-framed persuasive appeals. In H. Cho (Ed.), Health communication message design: Theory, research, and practice (pp. 3-20). Los Angeles, CA: Sage. [pdf]

 

Peters, G.-J. Y., Ruiter, R. A. C., & Kok, G. (in press). Threatening communication: A critical re-analysis and a revised meta-analytic test of fear appeal theory. Health Psychology Review. doi: 10.1080/17437199.2012.703527  [pdf]

 

 

For further reading about framing:

 

O’Keefe, D. J., & Jensen, J. D. (2006). The advantages of compliance or the disadvantages of noncompliance? A meta-analytic review of the relative persuasive effectiveness of gain-framed and loss-framed messages. Communication Yearbook, 30, 1-43.

 

O’Keefe, D. J., & Jensen, J. D. (2007). The relative persuasiveness of gain-framed and loss-framed messages for encouraging disease prevention behaviors: A meta-analytic review. Journal of Health Communication, 12, 623-644. doi: 10.1080/10810730701615198

 

Latimer, A. E., Salovey, P., & Rothman, A. J. (2007). The effectiveness of gain-framed messages for encouraging disease prevention behavior: Is all hope lost? Journal of Health Communication, 12, 645-649. doi: 10.1080/10810730701619695

 

O’Keefe, D. J., & Jensen, J. D. (2009). The relative persuasiveness of gain-framed and loss-framed messages for encouraging disease detection behaviors: A meta-analytic review. Journal of Communication, 59, 296-316. doi: 10.1111/j.1460-2466.2009.01417.x

 

Gallagher, K. M., & Updegraff, J. A. (2012). Health message framing effects on attitudes, intentions, and behavior: A meta-analytic review. Annals of Behavioral Medicine, 43, 101-116. doi: 10.1007/s12160-011-9308-7

 

 

For further reading about fear appeals:

 

Witte, K., & Allen, M. (2000). A meta-analysis of fear appeals: Implications for effective public health programs. Health Education and Behavior, 27, 591-615. doi: 10.1177/109019810002700506

 

de Hoog, N., Stroebe, W., & de Wit, J. (2007). The impact of vulnerability to and severity of a health risk on processing and acceptance of fear-arousing communications: A meta-analysis. Review of General Psychology, 11, 258-285. doi: 10.1037/1089-2680.11.3.258

 

Yzer, M. C., Southwell, B. G., & Stephenson, M. T. (2013). Inducing fear as a public communication campaign strategy. In R. E. Rice & C. K. Atkin (Eds.), Public communication campaigns (4th ed., pp. 163-176). Los Angeles, CA: Sage.

 

 

 

 

Day 5: Assorted message variations part 2

 

O’Keefe, D. J. (2013). The relative persuasiveness of different forms of arguments-from-consequences: A review and integration. Communication Yearbook, 36, 109-135. [pdf]

 

Noar, S. M., Benac, C. N., & Harris, M. S. (2007). Does tailoring matter? Meta-analytic review of tailored print health behavior change interventions. Psychological Bulletin, 133, 673-693. doi: 10.1037/0033-2909.133.4.673  [pdf]

 

 

For further reading about tailoring:

 

Hawkins, R. P., Kreuter, M., Resnicow, K., Fishbein, M., & Dijkstra, A. (2008). Understanding tailoring in communicating about health. Health Education Research, 23, 454-466. doi: 10.1093/her/cyn004

 

Noar, S. M., Harrington, N. G., & Aldrich, R. S. (2009). The role of message tailoring in the development of persuasive health communication messages. Communication Yearbook, 33, 73-133.

 

Krebs, P., Prochaska, J. O., & Rossi, J. S. (2010). A meta-analysis of computer-tailored interventions for health behavior change. Preventive Medicine, 51, 214-221. doi: 10.1016/j.ypmed.2010.06.004

 

Wanyonyi, K. L., Themessl-Huber, M., Humphris, G., & Freeman, R. (2011). A systematic review and meta-analysis of face-to-face communication of tailored health messages: Implications for practice. Patient Education and Counseling, 85, 348-355. doi:10.1016/j.pec.2011.02.006

 

Noar, S. M., & Harrington, N. G. (2012). Computer-tailored interventions for improving health behaviors. In S. M. Noar & N. G. Harrington. (Eds), eHealth applications: Promising strategies for behavior change (pp. 128-146). New York: Routledge.

 

Harrington, N.G., & Noar, S.M. (2012). Reporting standards for studies of tailored interventions. Health Education Research, 27, 331-342. doi: 10.1093/her/cyr108

 

 

For further reading about narrative:

 

Hinyard, L. J., & Kreuter, M. W. (2007). Using narrative communication as a tool for health behavior change: A conceptual, theoretical, and empirical overview. Health Education and Behavior, 34, 777-792.

 

Moyer-Gusé, E. (2008). Toward a theory of entertainment persuasion: Explaining the persuasive effects of entertainment-education messages. Communication Theory, 18, 407-425. doi: 10.1111/j.1468-2885.2008.00328.x

 

Braddock, K., & Dillard, J. P. (2012, November). The effect of narrative on beliefs, attitudes, and intentions: A meta-analysis. Paper presented at the annual conference of the National Communication Association, Orlando, FL.

 

Bilandzic, H., & Busselle, R. (2013). Narrative persuasion. In J. P. Dillard & L. Shen (Eds.), The Sage handbook of persuasion: Developments in theory and practice (2nd ed., pp. 200-219). Thousand Oaks, CA: Sage.

 

 

For further reading about other message variations:

 

O’Keefe, D. J. (2000). Guilt and social influence. Communication Yearbook, 23, 67-101.

 

Sopory, P., & Dillard, J. P. (2002). The persuasive effects of metaphor: A meta-analysis. Human Communication Research, 28, 382-419. doi: 10.1111/j.1468-2958.2002.tb00813.x

 

Eisend, M. (2006). Two-sided advertising: A meta-analysis. International Journal of Research in Marketing, 23, 187-198. doi:10.1016/j.ijresmar.2005.11.001

 

Lau, R. R., Sigelman, L., & Rovner, I. B. (2007). The effects of negative political campaigns: A meta-analytic reassessment. Journal of Politics, 69, 1176-1209. doi: 10.1111/j.1468-2508.2007.00618.x

 

Andrews, K. R., Carpenter, C. J., Shaw, A. S., & Boster, F. J. (2008). The legitimization of paltry favors effect: A review and meta-analysis. Communication Reports, 21, 59-69. doi: 10.1080/08934210802305028

 

Eisend, M. (2009). A meta-analysis of humor in advertising. Journal of the Academy of Marketing Science, 37, 191-203. doi: 10.1007/s11747-008-0096-y

 

Hornikx, J., & O’Keefe, D. J. (2009). Adapting consumer advertising appeals to cultural values: A meta-analytic review of effects on persuasiveness and ad liking. Communication Yearbook, 33, 39-71.

 

Carpenter, C. J. (2013). A meta-analysis of the effectiveness of the ‘‘but you are free’’ compliance-gaining technique. Communication Studies, 64, 6-17. doi: 10.1080/10510974.2012.727941

 

 

 


course home page

Daniel J. O'Keefe home page
Daniel J. O'Keefe email